标签:图论-LCA

题意略(太复杂了不想写)题解令 $f[i]$ 为不大于 $x$ 的最大斐波那契数,那么 $x$ 的父亲节点就是 $x-f[i]$ 。斐波那契数列的第 $58$ 项刚好小于 $10^{12}$ ,所以预处理前 $58$ 个就行了。求两个节点的 $\text{LCA}$ 可以用一种类似树剖的方法,不断地取 $u$ 和 $v$ 中的较大值跳到父节点,直到 $u$ 和 $v$ 相等。层数最多只有 $...
算法竞赛 图论-LCA
题意有一棵 $n(\le 3\times 10^5)$ 个点的树和 $m(\le 3\times 10^5)$ 条路径,可以把一条边的边权改为 $0$ ,求所有路径长度最大值的最小值。题解求最大的最小值,可以二分答案 $mid$ 。可以发现如果路径的长度 $> mid$ ,那么路径上一定有一条边要被修改。所以修改的这条边需要覆盖所有长度 $> mid$ 的路径,并且边权要 $\g...
题意有一棵 $N$ 点的树,有 $Q$ 次询问 $(a,b,c,d)$ ,问 $a\rightarrow b$ 与 $c\rightarrow d$ 是否相交。$N,Q\le 100000$ 。题解可以发现两条边相交,就一定存在一条边的最高点在另一条边上,即端点的 $\text{LCA}$ 。所以只用求 $\text{LCA}$ 就行了。第一次写倍增 $\text{LCA}$ ,感觉还是树剖...
算法竞赛 图论-LCA 算法-倍增
题意给一棵有 $n$ 个节点的树,然后再连 $m$ 条不重合的附加边,可以删除一条树边和一条附加边,问有多少种删除方法可以使树断裂。题解显然,每次加一条边以后树上一定会形成环,这个环任意断附加边就可以形成树,而树上任意断一条边就可以使树断裂。但是有可能会形成很多有重叠部分的环,这样按照上述方法不一定可以让树断裂。所以我们可以对每一条树边 $i$ 记录包含它的环的个数 $f[i]$ ,然后进行...
标签
其它-Firefox1 其它-pbds1 其它-pjax1 其它-Ubuntu1 其它-VSCode1 其它-网易云音乐1 动态规划52 动态规划-区间DP9 动态规划-单调队列优化DP5 动态规划-图上DP1 动态规划-斜率优化DP5 动态规划-树形DP16 动态规划-状压DP16 动态规划-线性DP10 动态规划-背包DP3 图论4 图论-LCA4 图论-Tarjan11 图论-二分图1 图论-割点3 图论-基环树1 图论-差分约束4 图论-强连通分量2 图论-最小环1 图论-最小生成树6 图论-最短/最长路19 图论-树上差分2 图论-树的直径4 图论-桥1 图论-缩点5 图论-负环4 字符串3 字符串-kmp2 思维题3 数学26 数学-bsgs2 数学-exgcd4 数学-gcd2 数学-中国剩余定理2 数学-卡特兰数1 数学-卢卡斯定理4 数学-快速幂4 数学-扩展中国剩余定理1 数学-扩展卢卡斯定理3 数学-矩阵5 数学-约数1 数学-组合数3 数学-质数1 数据结构-动态开点线段树1 数据结构-单调栈1 数据结构-单调队列2 数据结构-可持久化字典树2 数据结构-堆4 数据结构-字典树2 数据结构-并查集2 数据结构-栈1 数据结构-树状数组6 数据结构-树链剖分10 数据结构-线段树5 数据结构-队列1 比赛-Codeforces21 比赛-JX Round1 比赛-NOIp/CSP5 算法-KM算法1 算法-二分/三分12 算法-位运算1 算法-倍增4 算法-分块2 算法-分治3 算法-哈希2 算法-多叉树转二叉树2 算法-差分4 算法-悬线法1 算法-拓扑排序2 算法-排序3 算法-搜索21 算法-模拟5 算法-状态压缩4 算法-贪心10 算法-高精度3 问题-逆序对2 题目-一本通5 题目-网络流24题2